When we began our journey into making bullets, we knew that we wanted to open the nose of the bullet like a banana and shed those petals to achieve a flat front retained shank. Like shooting a flat based bullet backward. Again based on the Rathcoombe physics paper showing this form to create the largest wound channel and longest penetration. In the beginning we gave no thought to the process of shedding weight or what that shed weight did. Animal testing showed us that there was something to the shedding. Several things actually. 1st, there is a shock that happens that moment of opening and shedding. Much greater than a bullet that opens but retains all of it's weight. I'll come back to this. 2nd, without shedding the frontal area of the bullet becomes too large causing it to slow down too rapidly robbing it of its ability to make a large permanent wound channel. Remember vital tissue is elastic and the faster an object goes through it the more permanent disruption it makes. As a bullet slows the wound that it makes becomes smaller until it stops where is no longer makes any wound. Too large a frontal area and a rounded shape lessen the wounding. 3rd, the shed weight increases the stability of the retained shank aiding in longer straight line, meplat forward, penetration. 4th, a flat front retained shank is less likely to deflect off angled bone impacts. Whether it is edge of bone or angled shots. Again, better straight line penetration. 5th, the wounding that happens from the shed pieces as they pass through the animal. Yep, that's right. the shed petals from our bullet often exit the far side around the exit from the retained shank. Radiating at a very slight angle. This greatly increases the total area of the permanent wound channel.
Back to number 1. We control the amount of shed weight based on how deep we make the hollow point. This shed weight will remain the same with high or low velocity impacts. This is due to the raw material that we use, not any kind of scoring or broaching done to the bullet.
@nralifer is correct about the brittle coppers breaking and tearing too much. We used that copper in the beginning because we could get it to shed but it is very velocity dependent on how much bullet weight would be retained. Too deep a HP and it would come undone to several pieces at low vel. Too shallow and it would not lose enough weight and would break the nose off into a newly pointed bullet. Not good, but all we could find at the time and other big companies used it. High vel is easy with almost all copper. Back to our copper. If this shedding weight is a good thing, then shedding more is a better thing. Right? Well, that turns out not to be true. There is a dwell time that takes place during the moment that the bullet opens and sheds. If not shedding enough it lessens the shock and the extra wounding done by the shed pieces. If shedding too much, it takes longer for it to happen and too much bullet vel is lost to the process of shedding, lessening the size of the permanent wound channel due to lack of vel and lack of penetration. Over the years we have made some of our hollow points deeper and now in some cases coming nearly full circle to where we started. Not quite, still shedding more than what we started out doing. As a formula guy, this frustrating because there is no formula to it. Depends on nose length, and caliber, along with sectional density and other things. Over time it has become more of a feeling when looking at a new bullet design and determining how much of it to shed to get the most out of it.
Tips are another thing. I swore that Hammer Bullets would never have a tip. The tip is just a plug in the hole that has to be evacuated in order to get fluid into the hollow point to expand the bullet from the inside out. We tried aluminum tips and copper tips. They inhibited low vel performance and would break out to the side, causing irregular deformation and deflecting, along with changing direction of travel. Unpredictable straight line penetration. We had pretty well written off tips. As long range guys we wanted them to work in the worst way but there was no way we could market a bullet that had a lesser terminal performance than our current line of bullets. Consistent terminal performance matters more than anything else. Now we have a line of tipped bullets. Our good buddy
@pickens72 came out to visit a bit over a year ago and pushed us to make a tipped bullet. We gave in, mostly to prove to him that it wouldn't work. This time we designed around a particular tip design of poly. Dang if it didn't work. I don't want to give him too much credit, it'll go to his head! So we set out testing on animals for the next year and tweaking as we went. We were personally part of over 100 animal tests and we also got them into the hands of others that shot more animals than we did. Particularly
@fordy who set out to make it fail and couldn't. I know he pushed something close 1000 animals in his testing. He can verify the numbers. This design does not deflect like other tipped bullets on angled bone shots and we are actually seeing better terminal results at low to mid range impact velocity. 2800 fps down the wound channel stays the same. Defying common knowledge that the wound will get smaller with less vel. Has to do with tip material, bullet material, and how the two are married together. Again no broaching or scoring of the bullet to encourage deformation, maintaining the proper amount of force and time needed for full deformation and shedding, maximizing the initial shock from deformation and keeping the shed petals on the same straight line penetration of the retained shank.
I am not trying to P in anyone's cheerios. I think
@nralifer is making a fine product and he looks at this from a different angle than I do. I do like talking about material and design to reach the end goal of the best possible product. I think we all (in the business) strive to make better. This is just some of the evolution of how we got to this point so far.