PddPdd
Well-Known Member
Mike D.,,Back after a few days at work....Several thoughts to the above questions and comments.
I have not tried to shoot any similarly prepped and sized rounds on target yet. I have just been experimenting and troubleshooting my set-up. The purpose of my experiment was as much to describe my setup so others can also make use of it, as to get some preliminary data.
With regard to neck tension vs the length of neck sized. There are dies that will allow you to size the length of the neck precisely -- I do believe that Redding makes a bushing die with a micrometer to control the length of neck sized. Other dies like the LE Wilson Arbor die or other press bushing dies would require the "cap" to be screwed in or out to different depths and then to have the length of sizing measured and adjusted. This might work if you leave that die alone and do not adjust it or change bushings, but it would not be very repeatable or precise.
Also, I have two concerns with the idea of controlling neck tension force with adjusting the length of the neck sized. 1) If you are leaving part of the neck unsized to reduce overall tension, you are also running the possibility of increasing the risk of bullet run-out by losing full support for the bullet inside the neck (ie. less than one bullet diameter of support). 2) If the supposition is that NT does not matter at all because the case neck is blown out to chamber neck diameter with powder combustion, then sizing the neck to a greater or lesser length to change NT also would not matter.
Further, I feel that we all agree that the brass of the case neck will expand to chamber neck diameter with powder combustion, and freely release the bullet. However, neck tension or friction or force required for bullet release or any combination will briefly hold the bullet in place until the powder combustion occurs sufficiently for pressure to expand the case neck and freely release the bullet -- even if only for fractions of a microsecond. This is the only way to explain the findings that NT changes have an effect on velocity and accuracy -- otherwise, there would be no effect. Therefore, this suggests that any degree of NT will contribute to delayed bullet release and thus improved combustion efficiency, even if only to a small degree.
The whole idea that NT has at least some effect on accuracy, velocity, and powder burn uniformity is again supported by the findings that crimping affects these parameters. I have to admit that I am still reading about crimping and have yet to try it, but many respected members of this forum have shown that crimping can have significant effects on accuracy, velocity, and SD. Although I don't believe advertising without my own confirmation, Lee Precision does state the following in its description of their Factory Crimp Die (FCD): "Tests demonstrate that even bullets with no cannelure will shoot more accurately if crimped in place with the Lee Factory Crimp Die. A firm crimp improves accuracy because pressure must build to a higher level before the bullet begins to move. This higher start pressure insures a more uniform pressure curve and less velocity variation. Even powder selection is less critical." I have purchased a Lee FCD and will by testing it in the near future.
Mikecr -- One other comment or question, and I am not trying to be argumentative in any way, but just trying to make sure everyone is on the same page... you stated "The only pull force modifier which also directly affects bullet release is crimping. But crimping is not neck tension and you cannot adjust bullet release precisely/finely with it." I do agree that you can not adjust bullet release precisely with crimping, and I agree that crimping is controlled independently of neck tension and friction. However, to me it appears that crimping is essentially the exact same thing as NT, but only applied to a limited area of the neck (at the mouth) and to a greater degree (the neck is reduced past the point of plastic deformation after the bullet is seated). It appears it would exert its force as hoop tension, in a fashion similar to NT as discussed previously, and would be additive to the NT achieved by neck reduction and interference fit discussed above. Further, the discussion regarding NT being irrelevant due to neck expansion and bullet release following powder combustion would also appear to hold true to crimping, as the crimped portion of the neck would also be blown out by pressure causing release of the bullet, and that portion of the neck would not be expected to drag along the bullet jacket (unless, possibly, if the chamber had a very tight neck). I do agree that crimping has the ability to exceed the force of NT on the bullet due to the area and degree of force exerted by the plastically deformed mouth and neck (similar to a narrow tire exerting far more ground contact PSI than a wider tire due to increased surface area), and even more drastically with bullets with cannelures or where crimping may deform the case mouth into the bullet jacket. However, if crimping has been shown to affect powder burn efficiency, velocity, SD and accuracy, then NT must be able to do the same, even only to a small extent.
Two other important suggestions from the findings:
1. I do not feel that seating force is a good surrogate for NT. Although it is true that as NT (defined as neck OD from a loaded round minus OD of a sized case) is increased, seating pressure will increase; there is a point that will be reached where plastic deformation occurs (with use of a mandrel or seating of a bullet) and additional hoop tension or holding force can not generated. At this point, the elasticity of the brass measured as hoop tension against the bullet will reach a maximum point which will not be able to be overcome. Therefore, there will be a point of divergent consistency reached where any increase in seating force will not correspond to an increase in hoop tension exerted on the bullet. This occurred around 0.002" NT with the Hornady bullets in my experiment, but will likely vary by caliber and brass characteristics in other situations.
2. I do agree that overly sizing necks is counterproductive. As previously reported, and as noted above in #1, a point of neck reduction will be reached after which no further neck tension force will be able to be achieved. Past this point, additional sizing will only work on overworking the brass. The exception to this guideline will be if necks are being intentionally oversized to allow more consistent re-expansion with a mandrel.
I believe that the only true way to make any sense of this type of data is to have clean data by reducing the noise. The only device I can see that will provide consistent ram speed and movement, as well as be able to graph force vs distance is the AMP press. The software associated with the AMP press can also allow data sorting by peak pressure, distance at peak pressure, and area under the curve, which will allow for even more detailed analysis and comparisons. I feel that further attempts to produce good data with the analog presses, like those I have on hand, will only provide general trends.
Although not possible now, I would like to acquire an AMP press and test neck bushing reduction vs mandrel expansion vs crimping, seating force vs "release" force, and the correlation of all of these on accuracy, velocity and SD -- what really matters. I would also like to run other experiments, such as what effect does prolonged bullet seating (ie. "cold welding") have on the above, and can bullets be seated long for extended period of time and then bumped deeper to goal depth just before shooting, essentially breaking any cold weld. I will definitely post more info once available.
Best wishes, Mike D.
One thing that I'm thinking is that reduced neck ID and it's affect on how much the case neck "grips" the bullet could/should be related to the temper of the brass. I have not tested this but I have read that the use of or lack of annealing can affect spring back which would seem to relate to grip.
As an example, I would expect a pieces of brass that has been work hardened by firing many times without annealing would have a "stronger" grip on the bullet than freshly annealed brass when the neck OD is sized to the same dimension.. Perhaps the affect would be similar to crimping.
Pdd